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Abstract

An efficient and robust implicit operator for the point Gauss–Seidel method is presented for solving the compressible
Euler equations. The new implicit operator was derived by adding a scalar form of artificial dissipation to the upwind
implicit side. The amount of artificial dissipation was locally adjusted using a weighting factor based on the solution gra-
dient. For validation, the performance of the new implicit operator was compared in detail with that of several existing
implicit operators which have been widely used for solving the flow equations. Numerical experiments showed that the
stability and convergence characteristics of the new implicit operator are significantly better than those of other existing
implicit operators for calculating flows ranging from subsonic to hypersonic speeds.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Most of the implicit methods in computational fluid dynamics are derived by applying the local time lin-
earization to the nonlinear flux terms [1], which can be evaluated using either central-difference schemes or
upwind schemes. For central-difference schemes, it is necessary to add artificial dissipation to the explicit oper-
ator to suppress the odd–even decoupling and to control the numerical instability associated with the nonlin-
ear discontinuities such as the shock wave. The artificial dissipation models are often described as a blending
of second-difference and fourth-difference dissipation terms [2]. An artificial dissipation term is also added to
the implicit operator to extend the stability limit imposed by the explicit artificial dissipation. The addition of
the implicit artificial dissipation has a significant influence on the stability and convergence characteristics of
central-difference implicit methods, even though it does not affect the spatial accuracy of the resultant steady-
state solutions. The proper amount of implicit artificial dissipation to be added is closely related to that of the
explicit artificial dissipation [3–5].
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Upwind schemes are dissipative in nature due to their differencing stencil, and thus additional dissipation is
usually not needed. To obtain steady-state solutions, the consistency of adopting the same numerical splitting
scheme for both implicit and explicit operators is not required, because the spatial accuracy of the solution is
dictated solely by the explicit operator. In principle the numerical splitting scheme of the implicit operator
needs to be selected such that the implicit method exhibits good stability and convergence characteristics
[6,7]. Similar to the central-difference implicit methods, the performance of upwind implicit methods is also
expected to be highly dependent on the dissipative property of the numerical splitting scheme adopted in
the implicit operator, even though explicit control of the amount of the inherent numerical dissipation for
upwind schemes is a difficult task.

Currently, several approximate inversion methods are available, including the alternating-direction implicit
method [8], the point and line Gauss–Seidel (GS) methods [9], and the Krylov subspace method [10]. Among
them, the point GS method has been widely used for unstructured mesh topologies [11–13], because it is
algebraically simple and does not require any spatial coordinate direction splitting. Previous research works
[14–17] showed that the performance of the point GS method is very sensitive to the dissipative property of
the numerical splitting scheme of the implicit operator. When the splitting scheme of the implicit operator is
more dissipative than that of the explicit operator, the point GS method leads to good stability characteristics,
but typically yields slow convergence rates, as demonstrated by the lower–upper symmetric Gauss–Seidel
(LU-SGS) method [15,16]. In this method, the implicit operator was based on the central-difference scheme
with a scalar dissipation term which is typically more dissipative than the upwind scheme in the explicit oper-
ator. In contrast, when the dissipation level of the implicit operator is equal to that of the explicit operator, the
stability can be severely restricted [17]. These observations clearly indicate that it is difficult to construct an
efficient and robust implicit operator by adopting existing numerical splitting schemes with fixed level of
numerical dissipation.

In the present study, a new implicit operator has been developed for the improvement of the efficiency and
the robustness of the point GS method. For this purpose, an artificial dissipation model with an adjustable
coefficient was incorporated in the upwind implicit side to flexibly control the dissipation level. Initially,
the dependency of the stability characteristics on the dissipation level of the implicit operator was examined
by applying the von Neumann stability analysis to a scalar model equation. Then assessment of the perfor-
mance of existing implicit operators, which have been widely used for solving the Euler and Navier–Stokes
equations, was made by testing the effect of their dissipation levels on the stability and convergence charac-
teristics. Based on the insights from the analyses, an appropriate artificial dissipation model for the implicit
operator of the point GS method was suggested. Finally, the benefits of using the artificial dissipation model
in conjunction with upwind schemes were demonstrated through numerical experiments for flows ranging
from subsonic to hypersonic speeds.

2. Implicit point Gauss–Seidel method

The two-dimensional compressible Euler equations under the ideal gas assumption may be written in an
integral form for a control volume X with the boundary oX:
o

ot

Z
X

Q dV þ
I

oX
f ðQÞ dl ¼ 0; ð1Þ
where Q represents the vector of dependent variables, and f(Q) is the inviscid flux vector. The governing equa-
tions were discretized using a node-based finite-volume method in which the variables were stored at the nodes
of the mesh. The computational domain was divided into a finite number of triangles, and the control volumes
were constructed from the median duals surrounding each node [11]. The application of the Euler implicit
method and the local time linearization yields a linear system of equations:
LDQn ¼ �R; ð2Þ
where DQn = Qn+1 � Qn. L represents the implicit operator constructed with block matrices and has a dimen-
sion equal to the total number of nodes N. Also, R represents the explicit operator, which is a column vector
with N block entries. The explicit and implicit operators for the ith row are
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Ri ¼
X

j2nf ðiÞ
F ijðQn

L;Q
n
RÞlij; ð3Þ

Li ¼
V i

Dti
I þ oRi

oQ
: ð4Þ
Here, nf(i) is a set of face neighbor nodes for node i, and lij is the length of the control volume boundary shared
by nodes i and j. Also, Vi is the area of the control volume for node i. The local time step at node i, Dti, is
determined from the definition of the Courant–Friedrichs–Lewy (CFL) number. F ijðQn

L;Q
n
RÞ is the numerical

flux vector at the control volume boundary shared by nodes i and j, and the subscripts L and R refer to the left
and right states, respectively. The numerical flux of the explicit operator was evaluated in a second-order accu-
rate manner using a linear reconstruction method, while the Jacobian oRi/oQ for the implicit operator was
approximated to first-order accuracy. This defect correction algorithm [18] has been commonly adopted in
many implicit flow solvers, because the bandwidth can be reduced and the diagonal dominance property of
the implicit operator is enhanced.

To obtain first-order accuracy, the flow variables at the left and right sides of the control volume boundary
were set to those of the nodes at each side of the boundary. For second-order accuracy, the primitive variables
were linearly extrapolated to the control volume boundary using a Taylor series expansion. The solution gra-
dient required for the expansion was calculated using an unweighted least-square procedure [11]. This second-
order approach is equivalent to a second-order, upwind-biased MUSCL differencing on Cartesian meshes [19].
In order to suppress the numerical oscillation of the solution associated with the reconstruction, Venkata-
krishnan’s limiter [20] was adopted.

The solution of the linear system of equations in Eq. (2) can be obtained by using a point Gauss–Seidel
(GS) method in which several inner iterations with forward and backward sweeps are performed at each time
step. The implicit matrix operator L may be split into three parts:
L ¼ Dþ T1 þ T2; ð5Þ

where D is the diagonal matrix, and T1 and T2 are the strictly lower and upper matrices, respectively. Then the
point GS method can be written as the following two steps [21]:
½Dþ T1�DQ� þ ½T2�DQk�1 ¼ �R; ð6Þ
½Dþ T2�DQk þ ½T1�DQ� ¼ �R: ð7Þ
The first equation corresponds to the forward sweep and the second one represents the backward sweep. The
superscript k (k = 1,2,3, . . .) refers to the inner iteration index, and the superscript * denotes the most recent
values obtained from the forward sweep. The initial value DQ0 is taken to be zero.

Although the point GS method was originally developed for solving unfactored system of equations, it may
also be expressed in a form equivalent to approximate factorization. Then the factorization error of the point
GS method can be written as [21]
AF ¼ ½T1�½D��1½T2�DQn: ð8Þ

The factorization error is known to be the main source of deteriorating the stability and convergence charac-
teristics of approximate factorization methods, including the point GS method [21,22].

3. Analysis of point Gauss–Seidel method

In this section, the effect of the numerical dissipation level of the implicit operator on the performance of
the point GS method was examined by applying the von Neumann stability analysis [5] to an idealized scalar
model equation. In this stability analysis, the solution was decomposed into a Fourier series as
Qn

i;j ¼ EneIi/x eIj/y where En is the error amplitude at time level n, and /x and /y are the x- and y-directional
spatial frequencies, respectively. The magnitude of the largest eigenvalue of the amplification matrix defined
by G = En+1/En is the amplification factor and is denoted by jGj.

Consider a two-dimensional scalar convection equation
o

ot

Z
X

u dV þ
I

oX
f ðuÞ dl ¼ 0; ð9Þ
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where f ¼ ðaûiþ buĵÞ � n̂ and n̂ refers to the unit normal vector pointing outward from the control volume
boundary. The constants a and b are the wave speeds in the x and y directions, respectively. Opposite signs
are assigned to the wave speeds (in the present study, a > 0 and b < 0) to account for the eigenvalues with
mixed signs of the system of equations in Eq. (1). For the wave speeds with same signs, the factorization error
always cancels out when the relaxation is performed in a symmetric manner, as done in the present study. This
scalar equation was discretized using the Euler implicit method and the local time linearization as done in Eqs.
(2)–(4). The spatial accuracy of the implicit operator was set to first order, and the explicit operator was ob-
tained using a second-order, upwind-biased MUSCL scheme for the Cartesian meshes adopted in this stability
analysis.

A generic form of upwind schemes may be written as
F iþ1=2;j ¼
1

2
½auL þ auR � jajðuR � uLÞ�: ð10Þ
Then the first-order accuracy can be achieved by setting the state variables at the left and right sides of the
control volume boundary as
uL ¼ ui;j; uR ¼ uiþ1;j: ð11Þ

The central-difference scheme with a second-difference artificial dissipation term can also be written in a form
similar to that of upwind schemes:
F iþ1=2;j ¼
1

2
½auL þ auR � eijajðuR � uLÞ�; ð12Þ
where ei is the parameter which controls the amount of added dissipation.
In order to examine the effect of the numerical dissipation level of the implicit operator, the numerical flux

of the implicit operator is modified by adding the second-difference artificial dissipation to the first-order
upwind scheme:
F iþ1=2;j ¼
1

2
½auL þ auR � ð1þ eiÞjajðuR � uLÞ�: ð13Þ
Then the Jacobians for the implicit operator become
Aþiþ1=2;j ¼
oF iþ1=2;j

ouL

¼ 1

2
½aþ ð1þ eiÞjaj�;

A�iþ1=2;j ¼
oF iþ1=2;j

ouR

¼ 1

2
½a� ð1þ eiÞjaj�:

ð14Þ
The numerical flux of the explicit operator is not changed, and thus the numerical flux of the implicit operator
is more dissipative than that of the explicit operator when ei > 0. For ei < 0, an opposite statement can be
made. When ei = 0, the levels of numerical dissipation in both operators are equal.

In Fig. 1, the maximum value of the amplification factor obtained over the entire spatial frequency spec-
trum is presented as a function of CFL number for selected values of ei. The results were obtained by perform-
ing single inner iteration for a flow angle, h = b/a, of �10�2. The grid aspect ratio, AR = dx/dy, was set to
unity since the Euler equations are typically calculated using meshes with nearly isotropic cells. Note that
for a stable method, the value of the maximum amplification factor is unity, since the amplification factor
at the lowest spatial frequency mode (i.e., /x = /y = 0 mode) is always unity.

When ei = �0.5, the point GS method becomes unstable for CFL numbers higher than unity. This limiting
CFL number increases to approximately 10 when the dissipation levels in both operators are equal (i.e.,
ei = 0). As the dissipation level of the implicit operator further increases, the unstable behavior is rapidly alle-
viated, indicating that the stability characteristics of the point GS method can be improved by increasing the
dissipation level of the implicit operator. However, with excessive dissipation, even though the method
becomes unconditionally stable, the amplification factor approaches unity for all spatial frequencies and
the convergence rate can deteriorate considerably. The results imply that the stability and convergence char-
acteristics of the point GS method can be improved simultaneously only when the numerical dissipation level
of the implicit operator is properly adjusted, presumably higher than that of the explicit operator. It was
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Fig. 1. Maximum amplification factor obtained over the entire spatial frequency spectrum as a function of CFL number for selected
values of ei (scalar equation).
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observed that at other flow conditions with different flow angles or number of inner iterations, the essential
features of the analysis were unchanged.

In principle, the convergence of the inner iteration procedure for the point GS method can be assured when
the implicit operator is diagonally dominant. For first-order accurate upwind schemes, the diagonal domi-
nance is always guaranteed for any time step size [23]. When the second-difference artificial dissipation is
added to the upwind schemes, the ratio of the magnitude of the diagonal element to the sum of the magnitudes
of the off-diagonal elements can be written as
1þ V i;j=Dti;j

2ð1þ eiÞða dy � b dxÞ : ð15Þ
It shows that when the magnitude of ei increases above zero, the diagonal dominance of the implicit operator is
degraded and as a result the convergence rate of the inner-iteration procedure deteriorates. This indicates that
for the efficiency and the robustness of the upwind point GS method, the added artificial dissipation should
not be too large.

4. Existing implicit operators

Implicit operators can be obtained by applying the local time linearization to numerical fluxes. Consistent
upwind (CU) implicit operators are constructed by adopting same upwind schemes for both explicit and impli-
cit operators [1,15,16,24]. Alternatively, central-difference schemes can also be used in the implicit operator,
while the explicit operator still employs an upwind scheme. For the central-difference schemes, the diagonal
dominance property can be achieved only for a very small time step size, rendering the point GS method inef-
ficient. Nevertheless, Jameson and Turkel [25] showed that a diagonally dominant central-difference implicit
operator can still be constructed by adding numerical dissipation.

4.1. Construction of implicit operators

The upwind numerical flux vector based on Roe’s flux-difference splitting (FDS) scheme [26] can be written
at the control volume boundary shared by nodes i and j as
F ij ¼
1

2
½f ðQLÞ þ f ðQRÞ � jAð~QÞjðQR � QLÞ�; ð16Þ
where the flux Jacobian matrix A is defined by A = of/oQ. ~Q represents the Roe-averaged values of the left and
right states. Then the Jacobian matrices are obtained by linearizing the numerical flux in Eq. (16):
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Aþij ¼
1

2
½AðQLÞ þ jAð~QÞj�; A�ij ¼

1

2
½AðQRÞ � jAð~QÞj�: ð17Þ
In the linearization process, jAð~QÞj is frozen in time [1].
The central-difference scheme with a second-difference scalar dissipation term can be written as
F ij ¼
1

2
½f ðQLÞ þ f ðQRÞ � kjqjðQR � QLÞ�; ð18Þ
where k is a constant to be specified and jqj is the spectral radius of the flux Jacobian matrix. The Jacobian
matrices of the Jameson–Turkel (JT) implicit operator are obtained by linearizing the central-difference
scheme [27]:
Aþij ¼
1

2
½AðQLÞ þ jqjI�; A�ij ¼

1

2
½AðQRÞ � jqjI�; ð19Þ
where the constant k is suppressed because it is typically set to unity.
Since the Euler equations are hyperbolic, the flux Jacobian matrix A can be diagonalized. Then jAj can be

written as jAj = PjKjP�1, where the columns of the matrix P consist of the right eigenvectors of A. The diag-
onal matrix jKj is given by jKj = Diag[jk1j, jk2j, jk3j, jk4j], where ki’s are the eigenvalues of A. Then the coeffi-
cient in the dissipation term of the central-difference scheme can be written as a linear combination of two
matrices:
jqjI ¼ P jqjP�1 ¼ jAj þ AJT; ð20Þ

where
AJT ¼ PKJTP�1; ð21Þ
KJT ¼ Diag½jqj � jk1j; jqj � jk2j; jqj � jk3j; jqj � jk4j�: ð22Þ
It is clear that every element of KJT is greater than or equal to zero, because the spectral radius jqj is defined by
the largest eigenvalue of the matrix A. When the spectral radius is evaluated based on the Roe-averaged val-
ues, the Jacobian matrices of the JT implicit operator in Eq. (19) can be rewritten as
Aþij ¼
1

2
½AðQLÞ þ ðjAð~QÞj þ AJTð~QÞÞ�;

A�ij ¼
1

2
½AðQRÞ � ðjAð~QÞj þ AJTð~QÞÞ�:

ð23Þ
Compared to the upwind implicit operator based on Roe’s FDS scheme in Eq. (17), the Jacobian matrices of
the JT implicit operator contain an additional positive dissipation term. Thus, it is evident that the JT implicit
operator is more dissipative than the upwind implicit operator.

4.2. Numerical experiments of existing implicit operators

The numerical behavior of the two implicit operators were examined through numerical experiments, with
an emphasis on the effect of the numerical dissipation level of the operators. The selected test case was the flow
over a solid bump described by y = t sin2(px) and located at 0 6 x 6 1 [28]. For a fixed free stream Mach num-
ber of 0.8, two different flow problems, fully subsonic and transonic, were computed by changing the bump
thickness t. The overall computational domain was 20 unit lengths long and 10 unit lengths high. The domain
was decomposed into an unstructured triangular mesh composed of 6359 nodes, of which 215 lied on the
bump surface. The slip boundary condition was imposed at the bottom boundary of the computational
domain, including the bump. The characteristic boundary condition was applied to three other boundaries.
In the explicit operator, Roe’s FDS scheme was adopted.

In Fig. 2, the Mach number contours for 2% and 20% thick bumps are presented. It shows that the flow
field of the 2% thick bump is completely subsonic, whereas for the 20% thick bump a strong shock wave exists
at the leeward of the bump.

In Fig. 3, the convergence histories of the CU and JT implicit operators are compared for the bump flows.
The convergence was measured by taking the logarithm of the L2 norm of the residual of the conservation-of-
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mass equation. In the beginning of the calculation, the CFL number was set to one for all test cases, and then
increased inversely proportional to the reduction of the L2 norm up to 107 or until the maximum allowable
value was reached. For the 2% thick bump flow, both CU and JT implicit operators were stable for all
CFL numbers tested. However, the CU operator led to a much better convergence rate than the JT operator,
indicating that addition of more dissipation to the implicit operator simply degrades the convergence behavior
for fully subsonic flows.

In contrast, the results for the 20% thick bump flow revealed that the CU implicit operator is under a severe
stability restriction, and the maximum allowable CFL number to obtain a machine-accurate solution was as low
as three. However, the JT implicit operator did not suffer any stability restriction for all CFL numbers tested and
led to a better convergence rate. The results of this 20% thick bump flow involving a strong shock wave indicated
that the stability characteristics improve as the dissipation level of the implicit operator increases.

When the maximum CFL number was set to 30 for the flow over the 20% thick bump, the calculation using
the CU implicit operator failed after 103 iterations. In Fig. 4, contours of the density residual are presented
after 100 iterations, just before the calculation started to diverge. It clearly revealed that the region of signif-
icantly large residual values appears near the shock wave, indicating that the numerical instability of the CU
implicit operator is intimately related to the presence of a strong solution gradient such as the shock wave.
From the above stability and convergence results, it was found that the CU implicit operator in general
has non-robust numerical behaviors, while the JT implicit operator is very robust but may lead to slow con-
vergence. As a consequence of these results, it is highly desirable to devise a new implicit operator that is both
efficient and robust for calculating flows involving strong solution gradients by properly adjusting the amount
of added dissipation depending on the local flow characteristics.

5. Implicit operator with added artificial dissipation (AD)

It was shown that for the robustness of the point GS method, the numerical flux of the implicit operator
needs to be more dissipative than that of the explicit operator. To achieve this feature, additional artificial dis-
a

b

Fig. 2. Mach number contours over the bump: (a) 2% thickness and (b) 20% thickness.



Iterations

L
o

g
 (

R
es

)

0 1000 2000 3000
-16

-14

-12

-10

-8

-6

-4

-2

0

CU
(CFL=107)

JT
(CFL=107)

Iterations

L
o

g
 (

R
es

)

0 1000 2000 3000
-16

-14

-12

-10

-8

-6

-4

-2

0

CU
(CFL=3)

CU
(CFL=30)

CU
(CFL=10)

JT
(CFL=107)

a

b

Fig. 3. Comparison of convergence histories between the CU and JT implicit operators for the bump flow: (a) 2% thickness and (b) 20%
thickness.

J.S. Kim, O.J. Kwon / Journal of Computational Physics 224 (2007) 1124–1144 1131
sipation can be added to the implicit operator. The concept of adding artificial dissipation to the upwind impli-
cit side was first attempted by Strang et al. [29] for the enhancement of the diagonal dominance. However, the
addition of artificial dissipation in fact has an effect of deteriorating the diagonal dominance of the implicit
operator, as shown in the previous section. In the present study, a second-difference artificial dissipation term
was added to the upwind implicit side to increase the amount of dissipation of the implicit operator. Then the
Jacobian matrices of the new implicit operator (AD) based on the numerical flux of Roe’s FDS scheme can be
written as
Aþij ¼
1

2
½AðQLÞ þ ðjAð~QÞj þ bjqjÞ�;

A�ij ¼
1

2
½AðQRÞ � ðjAð~QÞj þ bjqjÞ�;

ð24Þ



-3

-3

-3

0

-3

-2
-1

Fig. 4. Contours of the logarithm of the density residual just before the calculation started to diverge for the 20% thick bump flow.
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where the coefficient b is used to control the amount of added dissipation. Note that in the present AD implicit
operator, a scalar form of artificial dissipation is added to the CU implicit operator, while the JT implicit oper-
ator in Eq. (23) has a matrix form.

To achieve fast convergence while maintaining good stability simultaneously, it is essential to choose b
properly. In the present study, b was determined based on the von Neumann linear stability analysis such that
the present AD implicit operator has the stability characteristics equivalent to those of the robust JT operator.
For a demonstration purpose, the stability characteristics of the existing CU and JT operators were examined
for the linearized constant coefficient Euler equations. The results were obtained at a Mach number of 0.3, and
the flow angle, the grid aspect ratio, and the number of inner iteration were set equal to those used for the
analysis of the scalar equation in Fig. 1. The CFL number was set to 107. In the explicit operator, a sec-
ond-order accurate upwind biased scheme was used. In Fig. 5, contours of the amplification factor of the
CU and JT implicit operators are presented. It shows that while both implicit operators are unstable at
low spatial frequencies, the maximum amplification factor of the JT implicit operator was still less than that
of the CU operator, confirming that the JT operator is more robust than the CU operator.

In Fig. 6, the values of b which yield the maximum amplification factor of the AD implicit operator equiv-
alent to that of the JT operator are presented for various flow angles and Mach numbers. The flow angle chan-
ged from 0 to 1 in radian, and the local Mach number was tested between 0.2 and 5. The face Mach number
Mface was defined by the normal component of the local Mach number at the control volume face. The results
were obtained for a fixed CFL number of 107 by performing single inner iteration on an isotropic grid. From
the results, it was found that the AD implicit operator has stability characteristics similar to or less than those
of the JT operator, independent to the Mach number and the flow angle, when the coefficient b is determined
as a function of the face Mach number
b ¼ b
maxð1;M faceÞ

; ð25Þ
where the value of b is approximately 0.7.
In Fig. 7, contours of the amplification factor of the AD implicit operator are presented for the same flow

condition in Fig. 5. It shows that the damping characteristics of the AD implicit operator are very similar to
those of the JT operator in Fig. 5b over most of the spatial frequency spectrum, demonstrating that the sta-
bility and convergence characteristics of the AD implicit operator are very comparable to those of the JT
operator.

In order to further improve the convergence characteristics of the AD implicit operator, the amount of
added dissipation is adaptively adjusted depending on the flow characteristics. This technique is based on
the observation that the instability of the CU implicit operator is mostly associated with large solution gra-
dients such as the shock wave and thus the added dissipation is needed only in the local stiff flow regions. This
adjustment can be made by imposing a weighting to the added dissipation based on the magnitude of the solu-
tion gradients, similar to the adaptive artificial dissipation for central-difference schemes [2]. An effective



φ
x

φ y

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

1

0.90.70.3

0.9 0.7 0.3

1

1.1

Min=0.06017, Max=1.11028

0.5

0.5

φ
x

φ y

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

0.9 0.810.90.8

Min=0.76924, Max=1.00689

a

b

Fig. 5. Contours of the amplification factor: (a) CU implicit operator and (b) JT implicit operator.

J.S. Kim, O.J. Kwon / Journal of Computational Physics 224 (2007) 1124–1144 1133
choice of the weighting factor at the control volume face is the normalized second-difference of pressure [2],
and for unstructured meshes this weighting factor can be evaluated using the undivided Laplacian of pressure
[30]:
sij ¼ maxðsi; sjÞ; ð26Þ

si ¼
j
P

k2nf ðiÞðpk � piÞjP
k2nf ðiÞðpk þ piÞ

: ð27Þ
Then the AD implicit operator can be written as
Aþij ¼
1

2
½AðQLÞ þ ðjAð~QÞj þ sbjqjÞ�;

A�ij ¼
1

2
½AðQRÞ � ðjAð~QÞj þ sbjqjÞ�:

ð28Þ
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In the region of smooth flow, s is proportional to the square of the cell size, and thus the effect of the added
dissipation becomes negligible. When strong pressure gradients exist, the order of s increases and the added
dissipation works effectively for stabilizing the calculation. Here, the value of the constant b in Eq. (25) needs
to be adjusted properly because s is not unity in the region where the added dissipation is in effect. For prac-
tical calculations of flows ranging from subsonic to hypersonic speeds, a reasonable value of b is unity. This
value was used for all numerical experiments presented in the next section. Adaptive control of the added dis-
sipation also reduces the degradation of the diagonal dominance of the implicit operator, which is inevitably
caused by the addition of the artificial dissipation to the upwind implicit operator as shown in Eq. (15).

For Cartesian meshes, when the velocity component normal to all control volume faces is supersonic, the
CU implicit operator is not subject to any approximate factorization error. This is because either one of the
lower matrix T1 or the upper matrix T2 in Eq. (8) becomes zero. In contrast, since the spectral radius is used in
the coefficient of the dissipation term, the JT implicit operator does not have this favorable property. Even
though this is true only for Cartesian meshes, the approximate factorization error of the CU implicit operator
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is also expected to be smaller than that of the JT operator even on unstructured meshes. Since the present AD
implicit operator is constructed such that the added dissipation becomes active locally in the neighborhood of
stiff flow regions and it recovers to the CU implicit operator for the rest of the flow field, the magnitude of the
approximate factorization error of the AD implicit operator is approximately equivalent to that of the CU
operator.

The AD implicit operator can also be constructed for any other upwind numerical fluxes in a similar man-
ner by adding the artificial dissipation to the corresponding Jacobian matrices.

6. Numerical results

Several compressible flows ranging from subsonic to hypersonic speeds were calculated to examine the sta-
bility and convergence characteristics of the three implicit operators for practical nonlinear problems. The
numerical experiments about the effect of meshes with varying density were also conducted using solution-
adaptive local mesh refinement based on the second derivative of density [31]. For the upwind differencing
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of the nonlinear flux term, Roe’s FDS scheme was mostly used, but van Leer’s flux-vector splitting (FVS)
scheme [32] was also tested to confirm the robustness of the present AD implicit operator. In these numerical
experiments, the number of inner iterations was fixed to 10 for all test cases to maintain the consistency of the
analysis, even though the implicit operators were not at the maximum performance. The CFL number ranged
from 1 to 107 and was increased inversely proportional to the reduction of the L2 norm of the residual.

6.1. Bump flow

At first, the bump flow tested for the assessment of the performance of the existing operators was adopted
again for numerical experiment. The convergence histories of the three implicit operators are compared in
Fig. 8 for the maximum allowable CFL number of each operator above which the calculation simply diverges
or enters into a limited cycle oscillation after a few orders of residual reduction. Even though the best conver-
gence rate was obtained at a CFL number slightly lower than the maximum allowable CFL number [33], the
convergence results are shown for the maximum allowable CFL number since the difference is relatively small.

For the 2% thick bump flow, the stability and convergence characteristics of the AD implicit operator were
similar to those of the CU operator. Since the amount of dissipation added to the AD implicit operator was
monitored by the magnitude of the pressure gradient, the numerical behavior of the AD implicit operator was
evidently almost identical to that of the CU operator for this pure subsonic flow. It shows that all implicit
operators considered were stable up to the largest CFL number tested, but the CU and AD implicit operators
exhibited much better convergence rates than the JT operator.

For the 20% thick bump flow involving a strong shock wave, the CU implicit operator was subject to a
severe restriction on the CFL number and led to a very slow convergence rate. However, the JT and AD impli-
cit operators were unconditionally stable, demonstrating the effectiveness of adding numerical dissipation for
Table 1
Measure of relative CPU time required for the evaluation of each component

Component Normalized time

Explicit operator 1.0
CU implicit operator 3.56
JT implicit operator 2.85
AD implicit operator 3.59
GS sweeps 14.0
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the improvement of the stability characteristics. Even though the two implicit operators showed similar sta-
bility characteristics, the AD implicit operator converged much faster than the JT operator.

In Table 1, the relative CPU time required for the evaluation of each component of the calculation is pre-
sented. The CPU time was measured on a PC with Pentium IV 2.4 GHz processor and was normalized by the
cost for the explicit operator evaluation. It shows that the computational overhead for the evaluation of the
added dissipation term in the present AD implicit operator was almost negligible compared to the overall
sh and (b) refined mesh.Douglas three-element airfoil.007) 1124–11441137
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computational time. In the case of the subsonic flow, to achieve six orders of residual drop of the L2 norm, the
CU and AD implicit operators required 5582 and 5589 normalized CPU time, respectively, while it took
35,504 for the JT operator. For the transonic flow case, to reach the same level of residual drop, the AD impli-
cit operator required 6581 normalized CPU time, but the JT and CU operators took 22,437 and 70,435,
respectively.

To examine the effect of added artificial dissipation on the diagonal dominance property of the AD implicit
operator, the inner-iteration convergence histories are compared for the 20% thick bump flow in Fig. 9. The
convergence was measured by taking the logarithm of the L2 norm of the error defined by DQk � DQk�1 where
k refers to the inner-iteration index. The result for each operator is shown for a CFL number of 107 after
restarting from the same intermediate solution obtained after 300 iterations using the AD implicit operator.
The effect of the adaptive adjustment of the artificial dissipation in the AD implicit operator was also tested by
comparing the results with those obtained by fixing the weighting factor to unity over the entire computational
domain as done in [29]. It shows that uniformly added dissipation yielded a slower inner-iteration convergence
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rate than the original CU operator, demonstrating that addition of the artificial dissipation in the upwind
implicit operator deteriorates the diagonal dominance. In contrast, adaptive application of the artificial dissi-
pation in the vicinity of the shock wave reduced the instability, and thus slightly improved the inner-iteration
convergence behavior over the CU operator. The JT implicit operator led to the worst inner-iteration perfor-
mance, presumably due to its excessively dissipative property.

In smooth flow regions, because the value of the weighting factor s approaches zero, the CU and AD oper-
ators become almost identical, and thus the AD operator provides good damping characteristics over the JT
operator for high frequency modes as shown for the CU operator in Fig. 5. This is a desirable property of a
good smoother for multigrid schemes. Since the present AD implicit operator shows a much better conver-
gence behavior than the other two operators for transonic flows, it is expected that the AD implicit operator
also performs well as a smoother for multigrid schemes even in stiff flow regions.

6.2. Three-element airfoil flow

The second validation was made for a subsonic flow around the Douglas three-element airfoil at a free-
stream Mach number of 0.2 and an angle of attack of 16.21�. Calculation started on an initial mesh consisted
of 3015 nodes, of which 174 nodes were on the airfoil surface. To test the effect of mesh density, solution-adap-
tive mesh refinement by three levels was made, and the size of the final mesh increased to 12,984 nodes with
571 on the airfoil surface. The initial and final meshes in Fig. 10 show that the mesh refinement was made
mainly around the airfoil surface and along the wakes emanating from the trailing edge of each element.

The calculated surface pressure distributions on the initial and refined meshes are compared with experi-
mental data [34] in Fig. 11. It shows that the results obtained on the refined mesh generally compare better
with the experiment than those of the initial mesh, even though the peak values near the leading edge of each
element were slightly overpredicted, presumably due to the absence of the physical diffusion in the present
calculation.
Symmetry line

Cylinder

Shock shape from
shock-fitting method [36]

Present calculation

a

b

Fig. 13. Supersonic flow past a circular cylinder: (a) partial view of mesh (b) pressure contours at M1 = 20.
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The convergence histories of the three implicit operators are compared in Fig. 12 on both initial and refined
meshes for the maximum allowable CFL number of each implicit operator. The CU implicit operator showed
a stable behavior on the initial mesh up to the largest CFL number tested, but became unstable for CFL num-
bers above 102 on the refined mesh. In contrast, the JT and AD implicit operators exhibited an uncondition-
ally stable behavior on both meshes. This behavior confirmed that the dissipation added in the JT and AD
implicit operators is effective in increasing the stability limit even for subsonic flows. The dissipation adap-
tively adjusted based on the pressure gradient in the AD implicit operator worked well also for subsonic flows,
leading to a much better convergence rate than the CU and JT operators, regardless of the mesh density.

6.3. Supersonic flow past a circular cylinder

The final validation was made for supersonic flows past a circular cylinder at freestream Mach numbers of
2, 5, 10, 15, and 20. For freestream Mach numbers higher than 10, the entropy correction function [35] was
employed for both implicit and explicit operators to avoid the carbuncle problem of Roe’s FDS scheme. The
mesh used for the present calculations consisted of 2301 nodes, of which 34 lied on the cylinder surface. The
computational domain was 5 unit lengths long and 10 unit lengths high. In Fig. 13, a partial view of the mesh
and the pressure contours at a freestream Mach number of 20 are presented. It shows that the results of the
present calculation agree well with the prediction by a shock-fitting method [36].
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In Fig. 14, the calculated shock stand-off distance from the surface of the circular cylinder is compared with
experimental data [37]. It shows that the results of the present calculation obtained under the ideal gas
assumption agree well with the experimental data. In Fig. 15, the pressure distributions along the symmetry
line and on the cylinder surface are compared for all freestream Mach numbers considered. As the freestream
Mach number becomes higher, the pressure ratio across the shock wave increases, leading to a large solution
gradient.

In Table 2, a summary of the stability and convergence results is presented. Even though the CU implicit
operator performed fairly well at M1 = 2, the stability and convergence characteristics rapidly degraded for
higher Mach numbers and the maximum allowable CFL number was restricted below 10. This behavior
agreed well with other numerical results [24] based on supersonic flows past a rounded cone calculated on
structured meshes. For M1P 10, unlike the subsonic and transonic flow cases, the JT implicit operator also
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Fig. 16. Contours of the logarithm of the density residual for supersonic flow past a circular cylinder at M1 = 20: (a) CU implicit
operator and (b) JT implicit operator.

Table 2
Maximum allowable CFL number and the number of iterations required for six orders of residual drop for supersonic flow past a circular
cylinder

M1 CU JT AD

CFL Iterations CFL Iterations CFL Iterations

2 107 223 107 577 107 280
5 101 935 107 514 107 430

10 5 697 5 1280 107 302
15 2 2032 3 1406 107 271
20 2 1941 3 1423 107 304



1142 J.S. Kim, O.J. Kwon / Journal of Computational Physics 224 (2007) 1124–1144
experienced a severe stability restriction, and thus the convergence rate also became significantly poorer. How-
ever, the AD implicit operator with adaptive artificial dissipation was not subject to any instability for the
complete range of CFL numbers tested and led to fast convergence rates for all Mach numbers considered.
From these results, it can be stated that the scalar form of added dissipation employed in the AD implicit
operator is more effective in alleviating the stability limit than the matrix form of the JT operator, particularly
for high Mach number flows, even though the numerical behaviors of the two operators by the linear stability
analysis were similar.

In the case of the CU and JT implicit operators, the calculations failed to converge to machine accuracy or
diverged when the CFL number was set beyond the maximum allowable value depicted in Table 2. In Fig. 16,
contours of the density residual by the CU and JT implicit operators are presented when the calculation failed
to converge after a few orders of residual drop for a CFL number of 50. It shows that large residual and flow
oscillation mostly exist along the shock wave. When the CFL number further increased, the oscillation was
magnified and the calculation eventually diverged. However, the AD implicit operator was unconditionally
stable for the complete range of CFL numbers tested.
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Table 3
Maximum allowable CFL number and the number of iterations required for six orders of residual drop for supersonic flow past a circular
cylinder using van Leer’s FVS scheme

M1 CU JT AD

CFL Iterations CFL Iterations CFL Iterations

2 107 205 107 375 107 215
5 107 183 107 234 107 203

10 101 388 101 430 107 201
15 5 884 5 958 107 255
20 5 788 5 840 107 291
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In Fig. 17, the convergence histories on the adaptively refined mesh are presented at a freestream Mach
number of 20. The mesh refinement was made mostly along the shock wave and the number of nodes increased
to 3251. The results show that the numerical instabilities of the CU and JT implicit operators further amplified
on the refined mesh, and the calculations diverged even for very low CFL numbers where on the coarse initial
mesh only convergence stall was observed. The AD implicit operator, however, did not show any indication of
stability restriction up to the largest CFL number tested and converged very fast on the refined mesh.

The stability and convergence characteristics of the three implicit operators were also tested by adopting
van Leer’s FVS scheme in the explicit operator, and the results are presented in Table 3. In these calculations,
the CU and AD operators were also constructed based on the same FVS scheme. It shows that the AD implicit
operator was not subject to any instability and consistently led to good convergence rates at all Mach num-
bers, while the other two implicit operators were under severe stability restrictions at high freestream Mach
numbers, similar to those cases with Roe’s FDS scheme. Thus it is believed that the present adaptive dissipa-
tion model proposed to improve the stability and convergence characteristics of the point GS method also
works well with other upwind schemes as well.

7. Conclusions

In the present study, an efficient and robust implicit operator for the upwind point Gauss–Seidel method
has been developed for solving the compressible Euler equations. It was found that the amount of numerical
dissipation in the implicit operator has a significant effect on the stability and convergence characteristics. For
the robustness of the point Gauss–Seidel method, the numerical flux of the implicit operator needs to be more
dissipative than that of the explicit operator. Also, the amount of numerical dissipation in the implicit oper-
ator should be determined carefully to achieve the efficiency and the robustness simultaneously. Based on
these observations, a new scalar form of adaptive artificial dissipation model was developed for upwind impli-
cit operators.

In order to validate the implicit operator with the new dissipation model, numerical experiments were con-
ducted for flows ranging from subsonic to hypersonic speeds. For subsonic and transonic flow problems, both
matrix and scalar forms of added dissipation worked well for improving the numerical stability, and the Jame-
son–Turkel operator and the present operator were unconditionally stable. Even though the two implicit oper-
ators had similar stability characteristics, the present operator always showed much better convergence rates
than the Jameson–Turkel operator. For hypersonic flow problems, it was found that the matrix form of added
dissipation was not robust enough for handling strong shock waves, and thus the Jameson–Turkel implicit
operator suffered severe convergence degradation. Meanwhile the present implicit operator always showed
good stability and convergence characteristics. It was concluded that the present implicit operator with a sca-
lar form of adaptive artificial dissipation is more efficient and robust than other existing implicit operators for
solving the compressible Euler equations over a wide range of flow problems.
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